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Abstract Neural networks have become increasingly prevalent within the geosciences, although a
common limitation of their usage has been a lack of methods to interpret what the networks learn and
how they make decisions. As such, neural networks have often been used within the geosciences to most
accurately identify a desired output given a set of inputs, with the interpretation of what the network learns
used as a secondary metric to ensure the network is making the right decision for the right reason. Neural
network interpretation techniques have become more advanced in recent years, however, and we therefore
propose that the ultimate objective of using a neural network can also be the interpretation of what the
network has learned rather than the output itself. We show that the interpretation of neural networks can
enable the discovery of scientifically meaningful connections within geoscientific data. In particular, we
use two methods for neural network interpretation called backward optimization and layerwise relevance
propagation, both of which project the decision pathways of a network back onto the original input
dimensions. To the best of our knowledge, LRP has not yet been applied to geoscientific research, and we
believe it has great potential in this area. We show how these interpretation techniques can be used to
reliably infer scientifically meaningful information from neural networks by applying them to common
climate patterns. These results suggest that combining interpretable neural networks with novel scientific
hypotheses will open the door to many new avenues in neural network-related geoscience research.

Plain Language Summary Neural networks, a form of machine learning, have become
popular in geoscience over the recent past. A common limitation of neural networks in geoscience has
been the belief that they are “black boxes,” and their decision-making process is uninterpretable. This has
sometimes made geoscientists hesitant to use neural networks, since an understanding of how and why our
models make decisions is important to our science. Methods for interpreting neural networks have become
more advanced, however, and so we highlight two such methods that we think have particular promise
in geoscientific applications. The methods are called backward optimization and layerwise relevance
propagation, both of which help identify which inputs into the neural network were most helpful in the
neural network's decision-making process. Layerwise relevance propagation has not yet been introduced
to the geoscientific community, and we think it offers particularly useful interpretation traits, so we
introduce it here. We apply the methods to two commonly studied climate patterns, the El Niño Southern
Oscillation, and its impacts on seasonal climate patterns over North America, to showcase their utility.
Our results suggest that these two interpretation methods open many new avenues for the usage of neural
networks within geoscience.

1. Introduction
Machine learning methods are emerging as a powerful tool in scientific applications across all areas of geo-
science (e.g., Gil et al., 2018; Karpatne et al., 2018; Rolnick et al., 2019), including marine science (e.g., Malde
et al., 2019), solid earth science (e.g., Bergen et al., 2019), and atmospheric science (e.g., Barnes et al., 2019;
Boukabara et al., 2019; Lopatka, 2019; Reichstein et al., 2019). This revolution in machine learning within
the geosciences has been spurred by the coincident introduction of novel algorithms, an influx of large quan-
tities of high-quality data, and an increase in computational power for processing immense quantities of
data simultaneously. There have been limitations to the application of machine learning methods within
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geoscience, however, as their interpretation is commonly deemed difficult, if not impossible. Here, we
show that two recent techniques from computer science for interpreting one of the most common forms
of machine learning methods—neural networks—have the potential to transform how geoscientists use
machine learning within their research. More specifically, these methods enable the usage of neural
networks for the discovery of physically meaningful relationships within geoscientific data.

Neural networks, also occasionally dubbed “deep learning” (LeCun et al., 2015), are one of the most versatile
types of machine learning methods and can be used for a broad range of applications within the geosciences.
Such models have been used for time series prediction (e.g., Feng et al., 2015; Gardner & Dorling, 1999), iden-
tifying patterns of weather and climate phenomena within observations and simulations (e.g., Barnes et al.,
2019; Gagne et al., 2019; Lagerquist et al., 2019; Toms et al., 2019), and parameterizing subgrid-scale physics
within numerical models (e.g., Bolton & Zanna, 2019; Brenowitz & Bretherton, 2019, 2018; Chevallier
et al., 1998; Krasnopolsky et al., 2005; Rasp et al., 2018). The structure of the neural networks employed
within these applications can vary substantially, although the general concept is the same: given a set of
input variables, the neural network is tasked with identifying the desired output as accurately as possible.

Neural networks consist of consecutive layers of nonlinear transformations and adjustable weights and
biases (Goodfellow et al., 2016). The mathematics of how these layer-to-layer transformations are applied
to the data are well understood since the individual transformations themselves are mathematically simple
(e.g., Sibi et al., 2013). However, once a neural network has been trained, the reasoning of how and why it
combines information across its weights and biases and from each transformation to the next to arrive at its
ultimate output is not easily deduced, due to the potentially high complexity of the network architecture and
the increasing level of abstraction in later layers of the network (Samek et al., 2020). Thus, in practice, neu-
ral networks are often used—including in geoscience—without a detailed understanding of the reasoning
they employ to arrive at their output.

Even for applications where the network's output is all that is desired, a lack of understanding of a network's
reasoning can lead to many problems. For example, the neural network can overfit to the data and attempt to
explain noise rather than capturing the meaningful connections between the input and output. Additionally,
within the geosciences, sample sizes are typically limited, which means that the available samples might
not capture the full range of possible outcomes and thereby might also not be representative of the true
underlying physics driving the relationship between the inputs and outputs. In this scenario, the network
may fail to model the relationship correctly from a physical perspective, even if it accurately captures a
relationship between the inputs and outputs given the provided training data. Thus, the ability to interpret
neural networks is important for ensuring that the reasoning for a network's outputs are consistent with our
physical understanding of the Earth system.

The various applications of neural networks within the geosciences commonly rely on indirect scientific
inference. In many cases, the primary objective of the neural networks has been to maximize the accuracy
of the networks' outputs, from which indirect inferences have been made about the Earth system. For exam-
ple, by using neural networks to predict the likelihood that a convective storm would produce hail, Gagne
et al. (2019) showed that the neural networks made accurate predictions by identifying known types of
storm structures. In another case, Ham et al. (2019) used a neural network to predict the evolution of the El
Niño Southern Oscillation (ENSO) and then used interpretation techniques to show that ENSO precursors
exist within the South Pacific and Indian Oceans. However, even in these cases, the primary objective was
to construct a neural network that most accurately predicted its output, with the interpretation being used
to ensure the network attained high accuracy using reasoning consistent with physical theory. This theme
is common throughout geoscientific applications of neural networks: The network's output is the ultimate
objective, and interpretation techniques are used to ensure the network is making decisions according to our
current understanding of how the Earth system evolves. There have also been recent efforts within the geo-
science community to compile methods for improving machine learning model interpretability, including
those by McGovern et al. (2019).

We propose an additional use for neural networks, whereby the ultimate scientific objective of using a
neural network is its interpretation rather than its output. From this perspective, we show how neural
networks can be used to directly advance our understanding of the Earth system. To do so, we focus on
two methods—backward optimization and layerwise relevance propagation (LRP)—which trace the deci-
sion of a neural network back onto the original dimensions of the input image and thereby permit the
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Figure 1. Illustration of the neural network architecture used in this study. (a) A visualization of the nodes in the neural network architecture. The input layer
is colored yellow, the intermediate (hidden) layers are colored blue, and the output layer is colored red. The loss function is shown below the output layer and is
known as the negative log likelihood loss function, as discussed in the text. (b) A visualization of the activation function used within the hidden layers of the
neural network. (c) An example individual node from the neural network, depicting the inputs, outputs, and the application of the activation function.

understanding of which input variables are most important for the neural network's decisions. These
methods are particularly well suited for scientific inference when a physical understanding of relation-
ships is important, such as within geoscience. We find that LRP is particularly well suited for geoscientific
applications and has yet to be introduced to the geoscience community to the best of our knowledge.

We first discuss the theory and logic behind the two interpretation methods and then provide two examples
of how these methods can be used to explore physically meaningful patterns of Earth system variability. The
objective of this paper is to showcase the utility of using neural network interpretations for scientific infer-
ence. So we analyze two commonly studied climate phenomena, the ENSO, and its relationship to seasonal
prediction, so that we can first ensure the interpretation methods capture known patterns of geophysical
variability before extending into the unknown.

2. Neural Network Architecture
In this work, we use separately trained fully connected neural networks of identical design (detailed in
Figure 1). A fully connected neural network is the most basic form of neural network. Each neural network
that we use has an input layer, which receives the input sample, two intermediate “hidden” layers of nodes
with eight nodes each, and an output layer with two nodes that classifies which of two categories the input
is associated with. This type of network is commonly known as a classifier. The inputs for our examples are
vectorized maps (i.e., images) of geospatial phenomena and are labeled with a two-unit vector that describes
which of two categories, or classes, the image is associated with. Within the two-unit labeling vector, a 1
is placed in the index that the sample is associated with, and a 0 is placed in the other. The output of the
neural network is also a two-unit vector, which represents the neural network's estimation of the likelihood
that the input sample belongs in each class such that the output vector always sums to 1 and is calculated
using a softmax operator (see the appendix for more details). If the neural network is more confident that a
sample belongs in a particular class, then the output for the corresponding unit of the output vector will be
closer to 1. The objective of the neural network is to output a two-unit vector that is as similar to the label
vector as possible, which means it is tasked with maximizing its confidence that each input sample belongs
in its labeled category. More extensive details of the neural network architecture and training procedure are
provided in the appendix.

It is worth noting that we use a basic form of a neural network for our examples but could have chosen
more advanced architectures such as convolutional neural networks (CNNs, e.g., Krizhevsky et al., 2012).
The neural networks we employ are relatively shallow in that they have few layers, whereas it is becoming
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more common to use “deep” neural networks with many layers. However, the intent of this paper is to
present the usage of the interpretation of neural networks as a tool for scientific inference and not to
showcase the utility of various neural network architectures. We therefore opt to keep the networks as simple
as possible. In addition, we will show that this basic network architecture is sufficient to capture the known
relationships between the inputs and outputs of our examples. The interpretation methods we use also place
some restrictions on the structures of the neural networks, the details of which are discussed in the subse-
quent sections, and so our neural networks abide by these requirements. With that said, the interpretation
methods we discuss here are also applicable to a variety of other neural network architectures.

3. Neural Network Interpretation Methods
3.1. Backward Optimization (Optimal Input)

The technique called backward optimization calculates the input that maximizes a neural network's confi-
dence in its output, and we therefore refer to the generated pattern as the “optimal input” (Olah et al., 2017;
Simonyan et al., 2013; Yosinski et al., 2015). This method offers insights into which patterns the neural net-
work thinks are most associated with a particular output by using the weights and biases of a trained neural
network to iteratively update an input sample until it is most closely associated with a user-specified output
of the network.

Once a neural network is trained, the weights and biases can be frozen, which means that they are no longer
updated as the neural network sees new samples. So, in turn, the backward optimization method takes the
reverse approach to how a neural network is trained, and rather than updating the weights and biases of the
network itself, an input sample is iteratively updated given a trained neural network with frozen weights
and biases. The fact that the optimized input has the same dimensions as the samples used to train the
network is particularly useful and is helpful for determining which patterns within the input vector are most
important for describing any relationships between the input and output variables. The optimized input can
also be interpreted in the same units as the input samples used to train the network.

The backward optimization method is illustrated in Figure 2, detailed in code in the supporting information,
and proceeds as follows:

Method Input: User-defined output of a trained neural network.
Method Output: An optimized input that shows the input pattern most closely associated with the

user-defined output according to the trained neural network
Procedure:
1. A neural network is trained, and the weights and biases are frozen, which means that they are not

updated when a sample is input into the neural network.
2. A desired output from the neural network is defined. For example, if the network is trained to identify

whether a sample belongs in one of two categories, the desired output could be when the neural network
is 100% confident that the input belongs in one of the two categories.

3. A sample is generated of the same shape as the samples used to train the neural network, but the sample
is initialized as all zeros.

4. This all-zero sample is passed through the network, and the output is gathered. The output is then com-
pared to the desired output, and the loss (i.e., error) of the all-zero sample is calculated with respect to
the desired output. The loss function is the same function used to train the network.

5. The loss is translated backward through the neural network to the input layer using backpropagation.
But, rather than updating the weights and biases of the network along the way, the input sample itself
is updated in a manner, which reduces the loss using an increment of the information, or gradient, that
was translated back to the input layer.

6. Iterate over Steps 4 and 5 until the input is optimized such that iterations no longer reduce the error of
the neural network's output.

Gagne et al. (2019) and McGovern et al. (2019) provide other examples of how the backward optimization
technique has been used in geoscience, and more specifically meteorology. We note that other techniques
for the initialization of the unoptimized input sample have been suggested, such as using Gaussian noise
rather than all zeros, but we have found that the optimized patterns are not sensitive to these initialization
techniques for our examples.

As will be discussed throughout the remainder of this paper, the backward optimization technique offers
valuable insights into a neural network's decision-making process, but it is not without its limitations.
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Figure 2. Illustration of the backward optimization procedure used in this study for interpreting neural networks. The steps illustrated here correspond to the
steps listed in section 3.1. The neural network within this schematic has already been trained, and the training procedure is not illustrated.

Briefly, the optimized input offers one composite perspective of the patterns the network looks for within the
input data. This composite perspective introduces problems when applied to domains where, for example,
multiple modes of variability may lead to the same outcome. In these cases, the optimal input may contain
a combination of each mode but will not elucidate how these modes may evolve either independently or in
tandem with each other. There are ways that the backward optimization method can be used for some of
these applications too, however, such as by optimizing an actual input sample rather than an all-zero sam-
ple toward a target output from the neural network. We do not discuss this application here, but McGovern
et al. (2019) briefly discuss such a technique.

Because of the complications of optimizing for a single optimal pattern, it is useful to also understand what
information within each input sample is important for the neural network's associated output. Fortunately,
there are methods for interpreting a neural network in this manner, one of which is called LRP, which we
discuss next.

3.2. Layerwise Relevance Propagation

While backward optimization has previously been used by the geoscience community, we are unaware of
any published applications of LRP to geoscientific problems, and so we go into additional detail describing
this method. In contrast to the optimal input technique, which generates a single optimized input given a
desired output, LRP considers one input sample at a time. The form of LRP that we use was introduced to
the computer science community by Bach et al. (2015) . This form of LRP is also referred to as a “deep Tay-
lor decomposition” of the neural network because of its relationship to Taylor series expansion (Montavon
et al., 2017), although the more general class of methods is referred to as LRP, and we will therefore refer to
the method as such.

For each input sample, LRP identifies the relevance of each input feature for the network's output and there-
fore helps isolate which input features are important for a network's output on a sample-by-sample basis.
For example, if the input is an image, the resulting output from LRP is a heatmap in the dimensions of the

TOMS ET AL. 5 of 20



Journal of Advances in Modeling Earth Systems 10.1029/2019MS002002

Figure 3. Illustration of the layerwise relevance propagation (LRP) procedure used in this study for interpreting neural networks. The steps illustrated here
correspond to the steps listed in section 3.2. The neural network within this schematic has already been trained, and the training procedure is not illustrated.
While the illustration does not show the propagation from one hidden layer to another hidden layer, the associated propagation method is identical to the
propagation from the output node to the final hidden layer shown in Step 3.

original image that shows the regions of the image, which are most important for generating the network's
output for that particular sample. It bears repeating that the heatmap is specific to the input sample, and so
different inputs yield different heatmaps, the patterns of which depend on how the information from that
input is transferred through the network as it makes its decision. LRP can be applied to any sample that is of
the same dimensions as those used to train the network, even if the neural network did not see the sample
during training.

Next, we generally describe how LRP traces the reasoning of a neural network's decision-making process,
although we refer the reader to the manuscripts of Montavon et al. (2017) and Bach et al. (2015) for more
details. We note that while the LRP methods presented by Bach et al. (2015) and Montavon et al. (2017) are
one formulation of LRP, new formulations can be developed according to the more general guidelines posed
within Bach et al. (2015).

The algorithm of LRP is illustrated in Figure 3 and proceeds as follows:

Method input: An input sample.
Method output: The relevance of each feature within the input sample for the associated output of the neural

network.
Procedure:
1. A neural network is trained, and the weights and biases are frozen, which means that they are not

updated when a sample is input into the neural network.
2. A sample is then input into the frozen neural network, and the output values are retained. If the neural

network has categorical output and uses a softmax operator following the output nodes, then the output
values prior to the softmax operator are retained. A single node of the output layer is identified as the
node for which the relevance should be calculated. For cases of categorical output, this node is typically
the one with the highest output likelihood for the given sample.
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3. The output value of the single node is then propagated backward through the network using information
about the weights and biases of each node of the neural network. The propagation is done according to
a particular set of propagation rules, which are discussed below. These rules depend on the types of the
neural network and input data, and what type of information is to be inferred from the network.

4. This backward propagation through the network is done until reaching the input layer. The resulting
values have the same dimensions as the input and correspond to the relevance of each input feature for
the neural network's decision of its output.

5. This process is completed for each sample of interest, from which the relevances for each sample can be
studied independently or through composites or clusters of similar patterns of relevance.

An important aspect of LRP is the rules by which the relevance is translated backward from the output
layer toward the input layer. For our purposes, we only show the relevance propagation rules that are most
fundamental to the theory of LRP. The rules that we use here, and which were introduced by Bach et al.
(2015), have been constructed such that the total summed relevance after propagation back to the input layer
is equal to the value of the output. For these rules, only information that positively contributes to the output is
propagated backward, and negative weights and biases are therefore ignored. That is, only information that
makes the network more confident in its categorical output is propagated backward, and information that
makes the network less confident is ignored. However, there are variants of LRP that permit the inclusion
of information that reduces the network's confidence, which are also useful for network interpretability but
extend beyond the scope of this paper (Montavon et al., 2017).

We note again that LRP traces information for a single output node (Bach et al., 2015). So, in the case of
categorical output as we present within this paper, the relevance is propagated backward for one of the
categorical output nodes—typically the node with the maximum output likelihood for the sample of interest.
If the neural network uses a softmax operator in its output layer, then during the relevance calculations, the
softmax operator is ignored, and the relevance is calculated for the network's output prior to the softmax.
The softmax operator is helpful to ensure the network converges on a solution during training, but the
presoftmax output is more useful for interpretability purposes since it is an unscaled representation of the
network's confidence in its output.

Once a sample has been input, passed forward through the network, and the output has been collected, the
first step in LRP is to use the following propagation rule to pass the information backward from the output
layer to the previous layer of nodes:

Ri =
∑

𝑗

aiw+
i𝑗 + max(0, b𝑗)

∑
iaiw+

i𝑗 + max(0, b𝑗)
R𝑗 . (1)

Within Equation 1, the i subscript represents the ith node in the layer of the network to which the relevance
is being translated backward, the j subscript represents the jth node in the layer of the network from which
the relevance is being translated, Ri is the relevance translated backward to the ith node, Rj is the relevance
of the jth node, ai is the output from the ith node after the nonlinearity has been applied when the sample
is passed forward through the network, w+

i𝑗 is the weight of the connection between the ith and jth nodes
where the + signifies that only positive weights are considered, and bj is the bias of the jth node. The terms
within this equation are illustrated schematically within Figure 3. As previously mentioned, the form of LRP
that we use neglects all negative weights and biases and only traces information backward through positive
weights and biases. This rule in Equation 1 is used to propagate the relevance backward through the network
from one layer to the next, starting with the output layer and extending backward to the first hidden layer.

There are separate rules for translating information to the input layer from the first layer of hidden nodes,
the rules of which depend on whether the values of the input features are bounded or unbounded. A case
where the values are unbounded is when the data are standardized and so has zero mean and unit variance
but is not necessarily restricted from varying across all real numbers. A case where the values are bounded,
on the other hand, is when all the input values are normalized between 0 and 1. For the case where the input
values are unbounded, the rule for translating the relevance from the first hidden layer to the input layer is

Ri =
∑

𝑗

w2
i𝑗∑

iw2
i𝑗

R𝑗 , (2)
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where all terms are as previously discussed for Equation 1. We use unbounded input data within our exam-
ples, and so we provide the propagation rule for the case of bounded data within the supporting information.
Additional information about other propagation rules is available within Samek (2019).

The rules for LRP presented within the literature have thus far been formulated for a specific subset of acti-
vation functions, types of neural networks, and neural network tasks. The rules that we present have been
developed to work best with the Rectified Linear Unit (ReLU) activation function, since they test whether
a node has been “activated” or not (Bach et al., 2015; Montavon et al., 2017). Neurons that use the ReLU
activation function are activated in the sense that their output is equal to the input if the input is greater
than zero but is zero if the input is less than zero (see Figure 1b for an illustration of the ReLU function).
So the formulation of LRP that we use ensures that it only traces information back through the network if
the nodes are activated and therefore pass information forward when the neural network is making its deci-
sion for a particular sample. If the ith node is not activated during the forward pass through the network,
then the ai term is zero in Equation 1, the relevance for the unactivated neuron i is zero, and the relevance
is distributed to the other activated neurons within that layer of nodes.

As we have discussed, we use a form of LRP that only propagates information that positively contributes
to the output node, which means that the relevance heatmaps show regions that contribute to increases of
the output likelihood that a sample belongs to a particular category. This interpretation is helpful for clas-
sification tasks, when increasing the likelihood that an input belongs in a particular category is of interest.
There are limitations to this approach for regression problems, however, where it is desirable to understand
which inputs cause an increase or decrease in the final output. For this reason, we have found that the for-
mulations described by Bach et al. (2015) are not well suited for interpreting neural networks tasked with
regression, and we therefore suggest that an LRP formulation needs to be developed specifically for regres-
sion problems. However, there have been examples of using LRP for regression problems in other fields
(e.g., Dobrescu et al., 2019), and so while LRP may similarly be a viable approach for regression problems
in geoscience, care should be taken in how the interpretations are used.

In addition, this formulation of LRP works well for fully connected neural networks (as we use in this study)
and convolutional neural networks, for which the propagation rules are similar (Montavon et al., 2018).
There have been efforts to expand LRP to more complicated neural network architectures, but in these cases
other propagation rules need to be used (Arras et al., 2019). It is therefore critical that the neural network
architecture be carefully considered prior to training if LRP is to be used.

Additional propagation rules for other cases, such as when negative relevances are to be considered, can
be found in the supporting information of this paper or within Montavon et al. (2017) and Samek (2019).
We use an implementation of LRP from the authors of the method, which is described in detail within
Alber et al. (2019), although an abundance of similar implementations also exist. The implementation we
use is available as the innvestigate package within Python, which has been written to work with the Keras
neural network package. Tutorials covering how to implement LRP within other programming languages
are available at heatmapping.org, and a list of other resources for LRP in Keras and other Python packages
is offered within the supporting information.

While there are limitations to LRP, neural networks can be thoughtfully constructed to mediate some of
these limitations. For example, many problems of regression can be reformulated as categorical problems
by discretizing a continuous output into a number of categories. Additionally, many tasks in geoscience do
not seem to require exceedingly complex neural network architectures (e.g., Barnes et al., 2019; Gagne et al.,
2019; Ham et al., 2019), and in many cases a basic form of neural network is sufficient to attain high accu-
racy. Therefore, while the current formulations of LRP do not solve all the limitations of interpreting neural
networks for geoscience, we show throughout the remainder of this paper that it still offers opportunities for
interpreting neural networks that are thoughtfully constructed with the ultimate objective of interpretation
in mind.

4. Applications to Earth System Variability
To illustrate how the interpretation of neural networks can be used to advance scientific knowledge, we
apply the backward optimization and LRP methods to two well-known patterns of climate variability within
the Earth system. We intentionally choose patterns that have been extensively researched by the Earth
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Figure 4. Composites of the monthly sea surface temperature anomalies during (a) El Niño (337 samples) and
(b) La Niña (485 samples). The composites include all events with a Niño3.4 index magnitude of greater than 0.5.

system/climate community, because our intent is to demonstrate the usage of neural networks for scientific
inference by first showing that the techniques can replicate what we already know before extending into the
unknown. Our aim is to provide readers with the intuition and confidence to use the techniques for their
own research questions.

For our examples, the inputs to the neural networks are vectorized geospatial fields, the domains of which
are discussed in their respective subsections. The neural network is tasked with identifying which of the two
categories the input geospatial fields are associated with and what the categories represent depends on the
example. It is worth noting that backward optimization and LRP can be applied to neural networks with any
number of output categories, but we limit the output to two categories for the sake of illustration. Additional
details about the neural network architectures we use are discussed in section 2 and the appendix.

4.1. The ENSO Pattern

The first example we use is the simpler of the two and shows how the backward optimization and LRP
methods can be used to interpret a neural network's understanding of the spatial structure of a well-known
climate pattern. We show that backward optimization is useful for gaining a composite interpretation of
the neural network's understanding of the climate pattern and that LRP extends beyond this composite and
also allows the interpretation of what information is useful to the neural network within each individual
sample. This example is intentionally simple, so we can test the abilities of the interpretation techniques,
rather than gain new knowledge about the climate pattern itself.

A neural network is tasked with identifying whether a sea surface temperature (SST) pattern is characteristic
of a positive (El Niño) or negative (La Niña) phase of the ENSO. ENSO is a dominant mode of Earth system
variability that acts on an interannual timescale and manifests as SST anomalies within the tropical Pacific,
although its indirect influences on weather and climate are global (Philander, 1983; Rasmusson & Wallace,
1983). We define the state of ENSO using the conventional Niño3.4 index, which is a spatial average of the
SST anomalies within the equatorial Pacific Ocean (between 5◦S to 5◦N and 170◦W to 120◦W). We calculate
the spatial average using the 1◦ by 1◦ Cobe V2 data set (Hirahara et al., 2017). According to this index,
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Figure 5. Illustration of the neural network design for ENSO phase identification.

negative SST anomalies within the east-central tropical Pacific are characteristic of La Niña, while positive
SST anomalies are characteristic of El Niño. Composite SST anomalies for each phase are shown in Figure 4.

For the neural network setup (shown in Figure 5), the first index of the label vector corresponds to La Niña
samples and the second index to El Niño samples. An example vector label for a La Niña case is therefore
[1, 0], and the output of the neural network is of similar form with the output value in each index corre-
sponding to the network's estimated likelihood that the sample belongs in each category. The input data set
is monthly SST anomalies for the years 1880 through 2017 from the 1◦ by 1◦ Cobe V2 data set (Hirahara et
al., 2017). We calculate the anomalies separately for each grid point by removing the mean for the years 1980
through 2009 and thereafter removing the linear trend. Samples from the years 1880 through 1990 are used
to train the network and those from 1990 through 2017 are used to test the network, and we only test and
train on months during which the Niño3.4 index magnitude was greater than 0.5. The network does not see
the 1990 through 2017 samples during training, and those samples are only used to test whether what the
network learns during training generalizes to samples on which the network was not trained. We vectorize
the global images of SST anomalies before inputting them into the neural network.

We also compare the results to linear regression to verify that the neural network is capturing physically rea-
sonable patterns, since the SST signal of ENSO is predominantly linear although does exhibit nonlinearities
(Dommenget et al., 2013; Monahan, 2001). For this approach, we first obtain a map of regression coeffi-
cients by regressing the time series of global SST anomaly maps onto the Niño3.4 index time series. We then
project this map of regression coefficients onto the observed SST anomalies to identify the ENSO phase.

The trained neural network identifies the ENSO phase with 100% accuracy on both the training
(654 samples) and testing (168 samples) data sets. It is expected that the neural network would have nearly
perfect accuracy given the intended simplicity of this example, which we use to illustrate the usefulness
of the interpretation techniques. Regardless, in order to achieve this accuracy, the weights and biases of
the neural network must contain information about the spatial patterns of SST variability characteristic of
ENSO. The linear regression approach is accurate for only 82.5% of samples, and this lower accuracy is likely
caused by noise within the global inputs. That is, with enough input samples, the linear regression should
determine that the bounding box used to define the Niño3.4 index (between 5◦S to 5◦N and 170◦W to 120◦W)
is the most useful region and ignore the remainder of the globe. To support this idea, the linear regression
approach is 100% accurate when only SSTs from this box are used as inputs.

We focus on the interpretation of the neural network's understanding of El Niño, although the interpretation
for La Niña is similar and provided in the supporting information (Figure S2). We first generate the optimal
input to identify the composite spatial pattern of SST anomalies that maximizes the network's confidence
that the sample is an El Niño event (Figure 6a) and the composite relevance heatmaps for all of the El Niño
samples (Figure 6b). Then, we use LRP to identify the regions on which the network focuses its attention
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Figure 6. Interpretation of the neural network's understanding of the spatial structure of El Niño based on 337 total
El Niño samples (including both training and testing data). (a) The optimal input field that shows the input image that
maximizes the confidence of the network that the sample is an El Niño event. (b) The LRP composite for all El Niño
events, where higher values denote greater relevance for the network's decision. Relevance values are normalized
between 0 and 1 for each sample, such that 1 denotes the highest relevance in each individual sample and 0 denotes
the lowest relevance. (c) Composite observed monthly sea surface temperature anomalies for all El Niño samples
(Niño3.4 > 0.5), identical to what is shown in Figure 4.
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Figure 7. An illustration of how the neural network focuses on different regions of sea surface temperature anomalies
for different types of El Niño: (a) an eastern Pacific El Niño event and (b) a central Pacific (Modoki) El Niño event. The
observed sea surface temperature anomalies for each case are shown in fill, and the LRP relevance is contoured. The
relevance has been normalized to lie on a scale from 0 to 1, and the contours range in value from 0.2 to 1.0 in
increments of 0.2. Relevance values less than 0.2 have been omitted. (c) (top) The Niño3.4 index time series from 1968
to 2011; (bottom) time series of the normalized relevance values for locations within the central Pacific and eastern
Pacific from 1968 through 2011. Relevance values are only shown for months during which the Niño3.4 index was
greater than 0.5. The central (eastern) Pacific location is denoted by the orange (purple) dot in panels (a) and (b) and is
located on the equator at a longitude of 200◦ (250◦). The types of each El Niño event during the 1968 through 2011
period are as labeled in Ashok et al. (2007), Lee and McPhaden (2010), and Wang and Wang (2014) and are denoted
above the time series as either central (“C”) or eastern Pacific (“E”) events. If an event was not determined to be
separable into a central or eastern Pacific event by Ashok et al. (2007), Lee and McPhaden (2010), or Wang and Wang
(2014), then it is not labeled.

for El Niño events on a sample-by-sample basis (Figure 7). The relevance values output from LRP for each
sample are normalized to range from 0 to 1 by dividing each heatmap by its own maximum relevance value.
We do this so that the relevances for each sample are weighted equally when compositing the relevance
across samples.

Backward optimization recovers a map of SST anomalies that is similar to the observed ENSO pattern in both
spatial structure and magnitude, particularly within the tropical Pacific (Figures 6a and 6c). There are some
differences in the sign and magnitude of the anomalies outside of the tropical Pacific, such as in the Atlantic
Ocean, although these regions are not conventionally considered to be a part of the predominant ENSO
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pattern and are also not highlighted to be important to ENSO by the LRP relevance composites (Figure 6b)
(e.g., Philander, 1983) The composite relevance for the El Niño samples also shows that the neural network
mainly focuses its attention on the tropical Pacific (Figure 6b). A region of nonzero relevance exists within
the North Pacific (Figure 6b), which may be associated with a well-known correlation between oceanic
variability within this region and the tropical signal of ENSO (Zhang et al., 1996) The linear regression
coefficients are spatially similar to the optimal input pattern, which increases confidence in the robustness
of the neural network visualization methods (Figure S1).

The utility of LRP is further highlighted by analyzing relevance heatmaps for individual samples. Figure
7a shows examples of eastern Pacific and central Pacific (i.e., Ashok et al., 2007) ENSO events in 1998 and
1987, respectively, and highlights that the network refocuses its attention on different regions of the tropical
Pacific to identify an El Niño event depending on the input. Furthermore, the neural network focuses its
attention on the regions of SST anomalies that are most commonly associated with the two types of El Niño
and learns to ignore other anomalies of similar magnitude within the western Pacific that are distinct from
ENSO. We only show the spatial relevance patterns for these two examples, although the relevance time
series for the central and eastern Pacific show that the network correctly refocuses its attention for all of the
input samples depending on the type of El Niño event (Figure 7c). Samples associated with central Pacific
El Niño events have higher relevance within the central Pacific than within the eastern Pacific, and vice
versa for samples associated with eastern Pacific El Niño events (Figure 7c).

We have shown that the neural network learns the physical structures of the various modes of ENSO, which
lends confidence that backward optimization and LRP can be used to better our understanding of other
patterns of Earth system variability. This example also highlights the capability of LRP to identify what infor-
mation a neural network uses in its decision-making process for each individual sample. The Earth system
rarely behaves according to a composite, and so the ability to analyze which aspects of each individual sam-
ple are important for the neural network's associated output is particularly useful for gaining new insights
into Earth system variability.

4.2. Seasonal Prediction Using the Ocean

To further illustrate the usefulness of the backward optimization and LRP methods, we next extend their
usage to a slightly more complex example in which we train a neural network to predict a surface temper-
ature response to SST anomalies months in advance. We focus on seasonal prediction, for which the ocean
is a predominant source of atmospheric predictability (Collins, 2002; Doblas-Reyes et al., 2013; Dunstone
et al., 2011). Specifically, while it is well known that ENSO is a dominant contributor to atmospheric sea-
sonal predictability (Ropelewski & Halpert, 1986; Wolter et al., 1999), there are other regions of oceanic
variability that offer extended atmospheric predictability. One such region is the North Pacific, which can
impact surface temperature and precipitation across North America (Capotondi et al., 2019; McKinnon
et al., 2016; Wang & Ting, 2000). We therefore predict continental surface temperature anomalies along the
west coast of North America, which is more complicated than predicting the phase of ENSO since the neu-
ral network must identify the numerous coincident patterns of SST anomalies across different spatial and
temporal scales that can contribute to seasonal temperature predictability.

As shown in Figure 8, we train the neural network to predict the sign (above or below zero) of surface
temperature anomalies at a location along the west coast of North America (50◦N, 240◦E) using maps of
SST anomalies within the tropics and Northern Hemisphere (north of 20◦S). Surface temperatures at the
chosen location, which is denoted by the red dot in subsequent figures, have previously been shown to have
extended predictability due to SST forcing on seasonal to annual time scales (e.g., Capotondi et al., 2019;
Gershunov, 1998). We input SST anomalies from the 1◦ by 1◦ Cobe V2 monthly SST anomaly data set that
is linearly interpolated onto a daily basis (Hirahara et al., 2017), and we use the years 1950 to present day.
The corresponding daily surface temperature anomaly labels are gathered from the Berkeley Earth Surface
Temperatures (BEST; Rohde et al., 2013) data set, also spanning from 1950 to present day. For both the
sea surface and continental surface temperatures, we calculate the anomalies separately for each grid point
by subtracting the mean values for the years 1980 through 2009 and thereafter removing the linear trend.
The training data set spans from 1950 to 2000 (∼18,000 samples), and the testing data set spans from 2000
to 2018 (∼7,000 samples). The surface temperature anomalies are averaged over a 60-day period to ensure
the predictions are capturing longer-term surface temperature variability, and the averages are centered
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Figure 8. Illustration of the neural network design for the seasonal prediction example.

such that a prediction with a lead time of 60 days implies a prediction of the average 30- to 90-day surface
temperature anomalies.

We use interpretations of the neural network to identify which SST patterns are useful for making extended
surface temperature predictions at various prediction lead times. We first train a neural network to predict
the sign of the 30- to 90-day average surface temperature anomalies (i.e., a 60-day lead time using our defini-
tion), for which the network has 67% accuracy. We then focus on interpreting the neural network for cases
when the surface temperature anomalies are positive, although the interpretation for the cases with nega-
tive anomalies is similar and provided within the supporting information (Figure S3). For this lead time, the
optimal input and LRP composite identify similar regions of SST patterns that lend predictability across the
tropical Pacific and North Pacific (Figures 9a and 9b). Both of these regions have been identified by previous
studies as sources of seasonal temperature predictability for the west coast of North America (Capotondi
et al., 2019; Gershunov, 1998; Wolter et al., 1999).

We next test the fidelity of the neural network interpretations by varying the prediction lead time of the
continental surface temperature anomalies from 180 days prior to 60 days following their occurrence. We
compare the neural network interpretations with that of linear regression to test whether the interpreta-
tions are reliable and if they offer any unique insight compared to more conventional approaches. Our linear
regression approach is similar to the approach used for the ENSO example. We first obtain a map of regres-
sion coefficients by regressing the time series of global SST anomaly maps onto the time series of surface
temperature anomalies over the west coast of North America. We then project the regression coefficient map
onto the global maps SST anomalies to predict the sign of the surface temperature anomaly. The resulting
accuracies of both prediction methods and the associated SST patterns that lend predictability are shown in
Figure 10.

At extended leads, the spatial patterns of SST anomalies identified by backward optimization and LRP are
similar to those identified by regression (Figure 10). Particularly, the tropical Pacific stands out as being a
predominant source of surface temperature predictability across the 180-, 120-, and 60-day prediction lead
times for both the neural network interpretation and the regression maps (Figures 10–10c). For the 60-day
prediction lead time, within the neural network interpretations the importance of the North Pacific begins to
increase relative to the ENSO region, and the North Pacific becomes the dominant source of predictability for
the concurrent and 60-day lagged SST anomalies (Figures 10–10e). Unlike the neural network, the regression
approach continues to highlight the tropical Pacific Ocean as important for identifying the concurrent and
60-day lagged surface temperature anomalies.

The neural network is more accurate than the regression approach for all prediction ranges, which suggests
that the neural network interpretations likely capture the SST patterns more closely associated with the
seasonal surface temperature anomalies. Specifically, the neural network interpretations suggest that the
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Figure 9. Interpretation of the neural network tasked with predicting 30- to 90-day average surface temperature
anomalies at the red dot based on ∼12,000 total samples (including both training and testing data). Only the
interpretation for positive surface temperature anomalies is shown, and the interpretation for negative anomalies is
shown in Figure S3. (a) The optimal input field that maximizes the network's confidence that the input sample
is associated with positive temperature anomalies at the red dot. (b) The LRP composite for all correctly categorized
samples of positive temperature anomalies, where higher values denote greater relevance. Relevance values are
normalized between 0 and 1 for each sample, such that 1 denotes the highest relevance in each individual sample and
0 denotes the lowest relevance. (c) Composite observed sea surface temperature anomalies for all cases where the
neural network accurately predicts positive surface temperature anomalies.
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Figure 10. A comparison of the spatial patterns of sea surface temperature deemed important for predicting surface
temperature at the red dot using neural networks and linear regression. An evolution of the sea surface temperature
patterns at various lead times is shown, including (a) 180 days before, (b) 120 days before, (c) 60 days before,
(d) concurrent with, (e) 60 days after the surface temperature anomalies. The prediction is made for surface
temperatures averaged across a 60-day window, and the prediction lead time listed above the subfigures is the center of
this window. So, for example, the 180-day lead time prediction is actually a prediction of the 150- to 210-day average
surface temperature. For each lead/lag, the top panel shows the neural network optimal input in fill and LRP
relevance in open contours, and the bottom panel shows the regression coefficients for the linear regression approach.
The open contours denote LRP relevance values ranging from 0.1 to 0.3 in increments of 0.05.

North Pacific is the predominant modulator of concurrent surface temperature anomalies along the west
coast of North America, while the tropical Pacific offers extended lead predictability (Figure 10). This idea
is corroborated by previous research that found the North Pacific modulates temperatures across western
North America separately from the tropical Pacific (Capotondi et al., 2019). So, while the neural network
is only slightly more accurate than the linear regression model, the increase in accuracy is caused by an
improved understanding of the most relevant SST patterns. Either nonlinearities or the increased pathways
for information to flow through the neural network likely contribute to this improved understanding.

5. Discussion and Conclusions
The recent surge in the popularity of neural networks within the geosciences has inspired the need for tech-
niques to interpret their decisions. Neural networks are conventionally thought of as “black boxes” within
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the geosciences with limited tools for the interpretation of the reasoning behind their decision-making pro-
cess. We have shown that the usage of two separate techniques enables physically meaningful inference from
thoughtfully designed neural networks. This ability to reliably interpret neural networks opens the door to
using the interpretation of how and why the network makes its decisions as the ultimate science outcome.

The backward optimization method can be used to quantify the patterns within the input data that max-
imize a neural network's confidence that an input is associated with a particular output. For the case of
categorical output as we present within this paper, backward optimization iteratively changes an input to
maximize the neural network's confidence that it belongs in a particular category. The optimized input has
the same dimensions and can be interpreted in the same units as the input samples used to train the net-
work but provides no direct indication as to which characteristics of the optimized input are most important.
In general, however, backward optimization is useful for identifying the dominant pattern of variability the
neural network looks for when making its decisions. In our examples of ENSO phase identification and sea-
sonal prediction, backward optimization was able to extract the dominant modes of variability known to be
associated with each problem (Figures 6 and 10).

LRP, on the other hand, considers each sample individually and provides information about the charac-
teristics of each sample that are most important, or relevant, for the network's associated output. LRP can
thereby provide insights into how relationships between the inputs and outputs of a neural network vary on
a case-by-case basis. The usefulness of this quality is exemplified by comparing the relevance heatmaps for
two types of El Niño events—the eastern Pacific and central Pacific, or Modoki, patterns (Figure 7). Although
the optimal input pattern does not distinguish between these two modes of El Niño variability because it
offers a composite interpretation (Figure 6a), LRP shows that the network does redirect its focus depending
on where the SST anomalies occur (Figure 7). While we do not examine this capability within this paper, it
is possible to cluster the LRP relevance heatmaps to identify secondary modes variability within each input
category if there is no a priori knowledge of their existence (Lapuschkin et al., 2019). The fact that the neu-
ral network learns the variable spatial structures of ENSO, and that LRP can elucidate this understanding,
suggests that LRP can be used to identify physically meaningful patterns within other geoscientific data sets,
as well.

There are particular requirements of the backward optimization and LRP techniques that constrain how a
neural network is constructed, the details of which are discussed in section 3. We therefore emphasize that
neural networks must be constructed thoughtfully so as to maximize the scientific value of their interpreta-
tion. The network architecture must be complex enough to capture any existing relationships between the
input and output data, but not so complex that interpretation methods are no longer usable, the balance of
which depends on the use case. The relative value of the accuracy and interpretability of a neural network is
of critical importance to scientific analyses and should be assessed carefully prior to training. For example,
first training a simple neural network and building toward a more complex model enables an understanding
of whether more complex and thereby less interpretable networks are necessary. If a network is too simple
to accurately capture the relationships between the input and output, then its accuracy will be low, and any
interpretations of its understanding will be limited in scientific value. On the other hand, if a network is too
complex and interpretation is impossible, then its value is limited solely to its output. A balance between
network complexity and interpretability must be struck if the interpretation of what a network has learned
is to be scientifically useful.

We have shown that techniques for interpreting neural networks have the potential to extend their usage
to the discovery of unknown patterns within geoscientific data, a concept which will be further explored in
future research. The ultimate scientific outcome of a neural network can now also be the interpretation of
what the neural network has learned, rather than only the output of the network itself. Regardless of the
specific application, it is now apparent that neural networks offer scientists a useful new way to discover
and understand connections within geoscientific data.

Appendix A: Additional Neural Network Details
The individual grid cells within the vectorized inputs, which are maps in our cases, are each treated as
independent inputs of the neural network. Each input node receives the value for one element of the input
vector and is connected to each node within the first hidden layer of internal nodes. The individual nodes
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of the first hidden layer are therefore each connected to every element of the input vector and can use
information from any input element according to the weight connecting the node to the inputs. The first
hidden layer is then connected to the second hidden layer in a similar fashion, with each node within the
first hidden layer connected to each node within the second hidden layer. The Rectified Linear Unit (ReLU)
activation is applied to the output from each of the hidden layer nodes before the output is passed on to the
next layer. Each node within the second hidden layer is finally connected to the two output nodes, which
represent the neural network's estimated likelihood that the input sample corresponds to each of the two
categories. The weights and biases are initialized randomly using the “He normal” technique (He et al.,
2015), such that they do not contain any information about the relationship between the inputs and outputs
upon initialization. When the neural network is trained, the weights and biases of the network are iteratively
updated until the output of the network is most similar to the input labels (i.e., the model is most accurate)
once the network's weights and biases have converged on an optimal solution.

The likelihood output is generated by applying a “softmax” operator to the output of the neural network
before estimating its accuracy, which is formulated as follows:

�̃�i =
exp(xi)∑
𝑗exp(x𝑗)

, (A1)

where xi represents the presoftmax output of the neural network for output node i (of which there are two
in our architecture), the numerator is the exponential of the value of that output node, and the denominator
is the sum of the exponential of all presoftmax outputs. In this sense, the postsoftmax output of the neural
network is a relative likelihood that the input sample belongs to each class, with higher values being indica-
tive of a higher likelihood, and vice versa. Following the application of the softmax operator, we then use
the cross-entropy loss function to estimate the accuracy of the network, which takes the form of

loss = −
∑

i
𝑦ilog(�̃�i), (A2)

where i represents the ith unit of the label vector for the input sample, yi is the value of the ith unit of
the label vector, and �̃�i is the output value of the ith node of the output layer from the neural network
after being transformed by the softmax operator. This loss function therefore assigns error to the output of
the neural network on a logarithmic scale based on how different the output likelihood vector is from the
label of the input sample and punishes large errors more severely than small errors due to the logarithmic
transformation.

The neural networks are trained using gradient descent with the Nesterov accelerated stochastic gradient
descent optimizer (Nesterov, 1983; Ruder, 2016). The learning rate is set to an initial value of 0.01 with a
Nesterov momentum parameter of 0.9. The learning rate is reduced by a factor of 0.5 after 50 epochs, and the
neural networks are trained for a total of 100 epochs, which is sufficient for convergence for both examples
within this paper.

We use L2 (i.e., ridge) regularization for each example to ensure the network divides its attention across a
greater number of input nodes than it otherwise would. For the ENSO problem, we use an L2 parameter
of 25 for the weights between the input layer and the first hidden layer and 0.01 for all other weights. For
the seasonal prediction problem, we use an L2 parameter of 10 for the weights between the input layer and
the first hidden layer and 0.01 for all other weights. We find that a careful selection of the L2 parameter is
important for ensuring that the neural network does not overfit to the input data, although our conclusions
are consistent for L2 parameters of 5 to 50 between the input layer and first hidden layer.

A more extended review of neural networks and their various forms are available through other resources
(e.g., Gagne et al., 2019; Gers et al., 1999; Goodfellow et al., 2016).
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